
End-User Programming in the Wild: A Field Study of CoScripter Scripts

Christopher Bogart

Oregon State

University

Margaret Burnett

Oregon State

University

Allen Cypher

IBM Almaden

Research

Christopher Scaffidi

Carnegie Mellon

University

{bogart, burnett}@eecs.oregonstate.edu, acypher@us.ibm.com, cscaffid@cs.cmu.edu

Abstract
Although a new class of languages has emerged to

enable end users to create their own web applications,

little is known about how end-user programmers actu-

ally use such languages in the real world. In this pa-

per, we report a field study on over 1400 scripts col-

lected from the internet which were created by early

adopters of CoScripter, a web macro programming-by-

demonstration language. We contrast these internet

scripts with those written by users inside IBM, and de-

scribe script usage and re-usage patterns, features

used, and users' clever workarounds for features not

present in the language. The results show how users

grapple with such programming notions as repetition,

generalization, and reuse, sometimes inventing their

own devices for these. Finally, we discuss the many

scripts we found with social implications, whose pur-

poses were to circumvent intended rules, regulations,

and usage norm assumptions of a number of web sites.

1. Introduction

What kinds of programs do end-user programmers

write in the real world? Although there is significant

literature on end-user programming in controlled con-

ditions and some literature on real-world end-user pro-

gramming based upon surveys and interviews (e.g.,

[9][10][11][12][13][16]), there is little information on

real-world programs themselves, especially in the

emerging paradigm of web scripting.

Web scripting (sometimes called creating “web

macros”) is a relatively new way of accomplishing re-

petitive common tasks in a web browser. For example,

consider the task of reserving a shuttle to the airport—

going to the shuttle service’s web site, navigating to

reservations for your city’s service, typing your name,

contact information, credit card information, and flight

time, and clicking the submit button, then repeating the

same process for the next trip. This task requires

mostly the same typing and navigation for every trip.

Worse, people sometimes may not remember all the

information needed or how to navigate through a web

site to accomplish the task.

Web macro tools address these problems by allow-

ing people to record and replay actions, saving key-

strokes and mouse-clicks. Macros remove the need to

remember detailed information and tricky navigation

sequences. Further, users can help other users with the

same needs if macros are publicly available.

Delivering benefits like these are the goals of web

scripting languages such as IBM’s CoScripter [6]. This

web macro recorder incorporates (1) sharing and reuse

of macros via a wiki that is tightly integrated into the

programming environment and (2) a simple variable

substitution scheme to facilitate reuse by others (e.g.,

automatically substituting each user’s own name or

phone number where required in a script).

But what tasks do people really automate with

scripts? Do they share and extend others’ scripts? Very

little is known about people’s uses of such languages

in the real world.

To fill this knowledge gap, we conducted a field

study on early adopters of CoScripter, investigating

1445 CoScripter scripts collected from the internet at

large and contrasting them with 665 scripts from IBM

users. Our research questions were:

(1) What kinds of scripts do end-user programmers

create? For example, are scripts for work or for play?

Oriented toward the author’s needs or for other users’?

We focus on “what kinds” in Section 4.

(2) How were the scripts designed? For example,

what kinds of constructs did their creators use? Did

they use abstraction? Did they build upon others’

scripts? We focus on “how” in Section 5.

(3) How does scripting potentially interact with as-

sumptions of the web society? We focus on this issue in

Section 6.

2. Background and Related Work

2.1 Background: CoScripter

CoScripter enables end-user programmers to dem-

onstrate actions in the Firefox browser, then saves ac-

tions as a “script” on a wiki. Anyone who has installed

the CoScripter browser plug-in can run the script to

replay the actions. The scripts are saved on the wiki

server, but run within the client’s browser. (The client

sends the server a notification whenever the user runs a

script.) In addition, anyone can add comments to a

script’s wiki page and rate the script’s usefulness. By

2008 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1-4244-2528-0/08/$25.00 ©2008 IEEE 39

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 17, 2008 at 09:45 from IEEE Xplore. Restrictions apply.

default, all scripts are public and can be used and

modified by others, but a script’s creator can mark it

“private” so that it is not visible to others. Scripts are

saved in an English-like syntax, with no additional

hidden information about the actions (Figure 1). Us-

ers can edit these scripts in this syntax, which Co-

Scripter directly parses and executes. For human

readability, CoScripter refers to buttons, links, and

other web page elements in terms of nearby text (a

technique pioneered in Chickenfoot [1]).

It would be inconvenient to share scripts if they

always used the creator’s personal data (such as

name and address), so CoScripter has a Personal Da-

tabase where each user can supply personal values

for variables. For example, the second action in Fig-

ure 1 uses a variable, which appears after the key-

word “your”. At runtime, CoScripter automatically

substitutes the user’s personal value. If the user’s

database lacked a personal value for this variable,

CoScripter would pause at runtime for the user to

enter a value before resuming execution.

2.2 Related Work

Researchers have studied creation, sharing, and evo-

lution of professional programmers’ code (for a survey,

see [4]). We aim to broaden this understanding to

cover end-user programmers’ scripts in the real world.

CoScripter is not the only web scripting tool, but it

is the first to feature ready access to numerous publicly

accessible end-user scripts. This accessibility is due to

integrating a programming-by-demonstration (PBD)

interface with a wiki. While other web scripting tools

have a PBD interface as well as features not found in

CoScripter (such as assertions [3], screen scraping fea-

tures [2], and email integration [18]), they lack a public

script repository. Conversely, Greasemonkey [8] and

Chickenfoot [1] have repositories but lack a PBD inter-

face, requiring programmers to write JavaScript. Thus,

their repositories mostly contain scripts created by rela-

tively well-trained (often professional) programmers.

There is some end-user programming research into

end users’ real-world practices, conducted primarily

through interviews and surveys. For example, surveys

identified web application features that should be pos-

sible to implement with web programming tools [11]

and the practices of informal web developers [10]. In-

terviews of scientists revealed that they place little

value in creating software, yet they do it anyway out of

necessity [15]. Interviews of teacher end-user pro-

grammers showed that programming was facilitated

when they could reuse code (either via copy-and-paste

or by incremental changes to an existing program) and

by the presence of many built-in language functions,

but programming was inhibited when tools offered

many features not relevant to a teacher’s task [16]. In-

terviews of “domestic” end users highlighted two goals

for programming household appliances: to make some-

thing happen in the future, and to facilitate repetition of

a task [12]. A survey of end-user programmers found

that abstractions in spreadsheets, web applications, and

other programming domains fell into three clusters—

PBD macros, imperative functions, and linked data

structures—such that people with a propensity to create

one abstraction had a propensity to create other ab-

stractions in the same cluster (even across different

programming domains) [13].

From both an abstraction and a power perspective,

the web scripting context that we consider differs from

the contexts of these prior studies. CoScripter supports

only two abstractions in the clusters mentioned above:

the scripts themselves are PBD macros, and the Per-

sonal Database is a minimalist data structure. CoScrip-

ter does not yet support conditionals, callable func-

tions, loops, or structured data—all of which are fea-

tures that have been identified as important for auto-

mating common tasks of browser end users [14]. Given

these novel design decisions, many open questions

arise, such as what useful tasks can still be automated,

what abstractions those scripts use, whether and how

scripts are successfully reused, and how scripts evolve

over time, with or without multiple users’ involvement.

The work closest to our own, a series of 26 inter-

views of CoScripter end-user programmers inside IBM

[5], addressed user motivations and experiences with

CoScripter. Although their research used log data on

Figure 1. The current step of the script (left) causes
CoScripter to highlight Flight Number (right) and fill
it in from the user s database (lower left).

40

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 17, 2008 at 09:45 from IEEE Xplore. Restrictions apply.

601 users to summarize usage, it did not analyze con-

tent or characteristics of the scripts. Our study builds

upon prior findings in three ways. First, it investigates

what was actually in the scripts that users chose to cre-

ate. Second, it analyzes scripts created by people on the

internet at large (not just IBM employees), thus giving

a picture of script creation by a large and varied popu-

lation of users. Third, it is the first large-scale field

study on end-user web scripting, including over 2000

scripts harvested from the real world.

3. Methodology

Our investigation method was the case study, which

is the right choice when asking “how” questions about

a contemporary set of events over which the investiga-

tor has little or no control [17]. Our purpose was to re-

veal previously unknown details of real-world web

scripts, as well as key phenomena that influenced the

creation of scripts. Since our goal was to discover and

report key phenomena, not to test hypotheses, it would

be inappropriate to report inferential statistics, and we

do not do so. Instead, we present quantitative summary

(non-inferential) statistics and qualitative data.

We gathered 1445 public web scripts and their edit

histories (3016 versions) from the public repository on

the internet as of Dec. 18, 2007, and the same informa-

tion for the 665 scripts on the internal IBM intranet site

as of Jan. 7, 2008. (Users could also create private

scripts that were not available for our analysis.)

We wrote tools to analyze scripts for attributes such

as use of variables and comments. In addition, since

some script attributes were difficult to detect automati-

cally, such as the purpose of the script, we hand-coded

the script attributes shown in Table 1 for 120 scripts.

Our hand-coding methodology was as follows. As

described in Section 4, the scripts naturally divided

into three groups in each repository. After excluding

scripts written by authors of this paper and one prolific

CoScripter administrator, we randomly chose 20

scripts from each internet group and 20 from each IBM

group. One researcher then coded these 120 scripts.

From that sample another researcher randomly chose

10 scripts to independently code each of 8 dimensions

reported in the paper (80 coded values), achieving at

least 90% agreement in each dimension and 95%

agreement overall (Kappa=0.77), indicating that the

code set was reasonably robust and reliably applied.

4. What Kinds of Scripts?

When we collected scripts, the internet site had been

available for 6 months, whereas the IBM site had been

available for 18 months. Even so, the internet site had

more than twice as many scripts and eight times as

many authors as the IBM site did (Table 2).

4.1 Internet Scripts and IBM Scripts

Since IBM users had earlier access and perhaps dif-

ferent motivations for using CoScripter, we suspected

that their scripts might differ from internet users’

scripts. Indeed, internet users who wrote scripts created

fewer per person (just over 2/person) than IBM scrip-

ters did (about 6/person). Internet and IBM scripts had

about the same median length (6 lines for internet

scripts, 5 for IBM) but the mean for Internet scripts

was nearly 20 lines compared to only 8 for IBM.

In addition, internet users’ scripts automated fewer

work-focused tasks than those of IBM users. In the in-

ternet repository, some of the most frequently executed

scripts involved lotteries and games (Figure 2). Others

dealt with consumer web sites like amazon.com; social

networking sites like Facebook; classified advertising

sites; banking and stock quote sites; bus, train, and air-

line scheduling and ticketing; sports and entertainment;

Table 1: The subset of our codes pertinent to
this paper.

Hand-coded script attributes

Data-intensive: Has at least one data item hard-

coded in the script.

Bending the Rules: Does something that circum-

vents a website designer’s intentions.

Self: Intranet URL, No URL, or hard-coded data.

Everyone: Not Self.

Login Needed: Would an anonymous user have to

register somewhere to get through this script?

Browser Fill-in Assumed: Script logs in by button

press without filling in user name.

Login Assumed: Script assumes a logged in session.

URL Assumed: Did not start with “go to <URL>”

Intranet Assumed: Goes to a URL not accessible to

most users.

Repetition: Contains the same code multiple times.

Set: Performs the same task with different parame-

ters each time.

Table 2: The internet repository was larger,
newer, and had fewer scripts per author than
the IBM repository.
 Internet IBM

Script Authors 2510 301

% authors with

public scripts

31% 38%

Scripts:

 Public

1445 (26%)

665 (37%)

 Private 4028 1117

 Total 5474 1782

Runs (Public) 13152 5247

41

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 17, 2008 at 09:45 from IEEE Xplore. Restrictions apply.

libraries; job searching; weather and news sites; and

generic search engines like Google.

In the IBM repository, scripts encompassed some of

the same domains as the internet scripts, but work-

related tasks dominated the scripts, many of which

automated interactions with IBM’s extensive intranet

system. Many scripts automated VOIP telephony func-

tions, such as call forwarding and checking messages.

Others worked with collaboration tools like wikis and

document sharing sites; corporate infrastructure (cafe-

teria menus, maintenance requests, employee admini-

stration); help desk; administrative support for man-

agement functions; technical education (accessing on-

line courses); and conference registration.

Leshed et al.’s early study of IBM users conjectured

that needs and use patterns would be different outside

IBM [5], and our data confirm this conjecture. An im-

plication of these differences for end-user program-

ming researchers is that early data collection within the

researchers' own institution may not be externally valid

if the ultimate target audience is outside the institution.

Consequently, for the remainder of this paper, we

will mainly focus on the internet repository and only

mention the IBM repository when there are interesting

examples or contrasts.

4.2 Popularity of Usage

In the internet repository, an 80/20 rule applied:

16% of the scripts (211) accounted for 80% of the

script runs. Figure 3 plots the average number of runs

of a script per user as a function of the number of dif-

ferent users of the script. The values hug the axes, ena-

bling us to identify three groups of scripts for analysis

purposes. We classify scripts as “ManyUsers” if they

were run by more than three users. Note that these

scripts tend to have few runs per user. Of the remaining

scripts—which had three or fewer users—we classify

as “ManyRuns” those scripts that averaged six or more

runs per user. Note that most of these scripts had few

users. We classify the remaining scripts as “FewUs-

ers/FewRuns”. In both repositories, 9-13% of scripts

were ManyUsers, 7% were ManyRuns, and 80-84%

were FewUsers/FewRuns (Table 3).

As discussed in Section 3, these three groups

formed the structure for sampling the 120 scripts that

we hand-coded. The remainder of this paper

characterizes most findings in terms of these groups.

4.3 Me-Oriented or Everyone-Oriented?

We coded our random sample of 120 scripts in

terms of potential audience: Self or Everyone. Figure 4

shows the results for the 60 in the internet group. Self

scripts were those containing hard-coded data, unspeci-

fied URLs, or URLs not reachable by most repository

users. Scripts not coded Self were coded Everyone.

(Two of the scripts in this random sample happened to

be empty files; we left them in the sample but coded

them as “blank”). Figure 2 is an example of a Self

script that contains hard-coded data.

CoScripter’s formative work categorized the needs

of surveyed users as “Sharing how-to knowledge” or

“Automating frequent tasks” [5]. Although we do not

know script authors’ intents, Self scripts were at least

consistent with the latter category. As Figure 4 shows,

about half (27/60) of the scripts were oriented toward

• click the “Lager” button
• enter “750000” into the “0,01 ¢” textbox
• enter “0,05” into the first “Einzelpreis” textbox
• click the “ versenden “ button
• click the “Die Kunden können von größeren Angebo-

ten auch Teilmengen kaufen.” button
• click the “Lager” button
• enter “750000” into the “0,01 ¢” textbox

 …

Figure 2: The beginning of a repetition-heavy
script for an electric utility simulation game.
The last five lines repeat 23 more times.

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400

Distinct Users

R
u

n
s
/
U

s
e
r
s

0

5

10

15

20

0 10 20 30 40

M anyUsers

M
a
n
y
R

u
n
s

F

e
w

U
s
e
rs

/

F
e
w

R
u

n
s

Figure 3: Most scripts hug the axes: run few
times by many users, many times by few users,
or few times at all.

Table 3: Counts of scripts in each group on
each site.
 Many

Users

FewUsers

FewRuns

Many

Runs

Total

Internet 9%

(131)

84%

(1208)

7%

(106)

100%

(1445)

IBM 13%

(87)

80%

(529)

7%

(49)

100%

(665)

42

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 17, 2008 at 09:45 from IEEE Xplore. Restrictions apply.

the author’s own use, and the other half (31/60) may

have been more convenient for others to use.

Not surprisingly, the scripts most widely used by

people other than the original author were those with-

out the Self-oriented attributes. Still, for scripts with

the Self-oriented attributes, many of them stood the

test of time and were run many times by the script’s

author (rightmost pie in Figure 4).

Note also that seven of the ManyUsers scripts in our

sample were Self scripts. Designers of programming

environments have sometimes expressed a vision to see

end-user programmers reusing one another’s code.

These scripts suggest that the ability to easily make

scripts available to others, even without explicitly gen-

eralizing them, can indeed lead to serendipitous reuse.

5. How the Scripts Were Programmed

5.1 How Users Did Repetition

CoScripter has no repetition constructs. Yet, users

found ways to accomplish repetition. One way they did

this was via copy-paste, duplicating code the desired

number of times. Such sequences were common; about

17% of the 1445 internet scripts had at least one dupli-

cate line, and in our coded sample of 120 scripts, 6

contained repetitive sequences. For example, one script

earned a user points in a Facebook game by clicking a

button hundreds of times to view a random profile. The

script’s version history shows that the user first tried to

end the script with “repeat” and then “go to start” (both

commands unknown to CoScripter), before settling on

copy-paste. Figure 2 shows another example.

A different form of repetition was set-based—

performing the same operation on different items in a

set. For example, one game script shipped identical

goods from five different outposts. To create such a

script, a user could use copy-paste to perform the same

actions five times, and then edit each copy to select a

different outpost via the game site’s drop-down widget.

Although the scripts described above might have

been simpler if the language had “repeat” and

“foreach” constructs, another set-based script that we

observed would be harder to simplify. This script ini-

tially updated the user’s Facebook status (e.g., by post-

ing “working” or “watching tv” to the server). Later,

other users added code to also update status on two

other social networking sites. This is repetition

(“foreach site, update status”), but the code to update

each site differed considerably, since the different sites

have different buttons to click on. In this situation,

“simplifying” the code (rolling it into a loop) would

require significant forms of abstraction, such as objects

with different method implementations (e.g., “foreach

ISocialSite s, s.update(‘watching tv’) ”).

Finally, one user figured out a way to do recursion,

and wrote about in the CoScripter online forum:

I find a workaround how to force it to automatically start

over. Just direct it to your script id, for example

go to "http://services.alphaworks.ibm.com/
 coscripter/browse/script/YOUR_SCRIPT_ID"

Then click the run link on the website and it will start

everything from the scratch.

Although our study period did not include any

scripts using this technique, three scripts later ap-

peared, ended with “go to” followed by a specially

formatted URL that CoScripter interprets to immedi-

ately load and run a script. The scripters may have

stumbled on this possibility by hovering over the Run

button on their script’s wiki page, and trying out the

unusual URL that is displayed in the browser’s status

bar. In all three cases, the construct was used to repeat-

edly click on buttons in games. Since there are no con-

ditionals in CoScripter, these users would presumably

have to terminate execution by hand, such as by click-

ing Stop, or closing the CoScripter window.

Other researchers have noted that web macros for

many tasks would require iteration [14]. The preva-

lence of repetition in our data offers further evidence of

the need for repetition constructs in web macro lan-

guages. It also shows evidence of the power of simplic-

ity that allowed end users to find ways to do repetition

even without such constructs.

5.2 How Users Did Reuse

CoScripter supports variables. While recording a

script, whenever the user types a value that matches

data in the Personal Database, CoScripter automati-

cally replaces that value in the script with a variable.

The Personal Database is the way variables vary from

user to user. Within IBM, the Personal Database is

automatically expanded to include the user’s

“BluePages” information, an internal corporate phone

book. Perhaps that helps explain why variables for

names, phone numbers, email addresses, office loca-

tions and the like abounded in the IBM scripts. But

13

7

0

ManyUsers

9

9

2

FewUsers/
FewRuns

5

15

0

ManyRuns

Figure 4: Coded scripts by potential audience,
internet repository. Self: dark; Everyone: light.
(Blank scripts in FewRuns: white.) Self scripts
predominate in ManyRuns, but are less com-
mon in ManyUsers.

43

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 17, 2008 at 09:45 from IEEE Xplore. Restrictions apply.

such variables were also fairly common in the internet

repository, where each user's Personal Database had to

be populated by hand. Of course, a user can add vari-

ables that are not really “personal” attributes, and some

scripts relied on that. Figure 5 shows such a script.

Overall, 20% of the 1447 internet scripts referenced the

Personal Database, and this greatly promoted reuse:

40% of these scripts were executed by multiple people.

Not everyone used variables for their data. In many

cases, a user initially created a script with a hard-coded

value and then went back and generalized the script to

reference the Personal Database. But sometimes when

users encountered a script with a hard-coded value dif-

ferent from the value they needed, they chose to simply

edit the hard-coded value. Figure 6 shows that this type

of edit was fairly common in the ManyRuns category;

overall, it accounted for about 9% of all edits. Interest-

ingly, in the ManyUsers scripts, more than half of

these changes were made by users other than the

author, showing that they were able to reuse the script

despite the hard-coded values.

We saw a preference for editing hard-coded values

especially often with the parameters of real estate

searches: price range, number of bedrooms, zip code,

etc. The program text in these cases is probably as easy

to change as the Personal Database, and no variable

names need to be invented. The values have clear se-

mantics because of the direct juxtaposition to their use.

Figure 7 shows an example; the script would hardly be

clearer by introducing variable references.

Another occasion for hard-coding values was when

a single user wanted to run the same script with differ-

ent hard-to-remember values at different times. To

handle this, some users created multiple copies of a

script and then edited different hard-coded values into

each copy. For example, IBM user U3 (we have

anonymized user names in this paper) created a set of

scripts, one for each type of printer toner cartridge to

be purchased. The scripts differed only in the part

numbers and prices entered into the form.

One of the authors (Cypher) handled a similar case

personally by having multiple variables with the same

name in his Personal Database, and shifting their order

before running a script, knowing that the first value

encountered would be used. IBM also experimented

with the addition of a special feature for importing per-

sonal data. It was used by managers of summer interns

to run scripts that filled in administrative forms with

data about an intern.

In a wiki context, where many users share scripts,

edits can cause problems when one user’s edits do not

suit the needs of other users. We know from Leshed’s

interview study that some CoScripter users did not

even realize that their edits would replace the original

script for all users [5]. Our data revealed that site ad-

ministrators repeatedly had to roll back edits to a cer-

tain tutorial script, which searched for “koala” on Goo-

gle Images. Users’ edits included pointing the script to

other search engines (such as internationalized versions

of Google) and changing the search term to other

words such as “bikini”.

5.3 Context: Implicit Preconditions in Scripts

Scripts often reflected assumptions about the

browser’s state prior to script execution. Some com-

mon preconditions we encountered were: the browser

being already at a certain URL; the user having access

to some non-public URL; the user being already regis-

tered to use a site; a cookie being set to indicate that

the user had already logged into a site; or the browser

having been configured to pre-fill form login and

password fields. These assumptions were usually im-

plicit, though a few users did express assumptions in

Make sure you have a “PubMedKey =
my_pet_biology_subject” entry in your “Personal Da-
tabase” (bottom left)

 • go to “http://www.ncbi.nlm.nih.gov/sites/entrez?
db=PubMed&itool=toolbar”

 • enter your “PubMedKey” in the “for” textbox
 • click the “Go” button

Figure 5: A comment (unbulleted) tells the user
to add a Personal Database variable, which the
script then uses in the second command.

3.51
4.39

17.29

5.71

0.43 0.00
0

5

10

15

20

ManyUsers FewRuns ManyRuns

%
 o

f
s
c
ri

p
t

e
d

it
s

Figure 6: Percent of all script edits that were
value edits by the script s author (left bar) or by
others (right bar).

• go to "http://www.rentometer.com/"
• enter "homestead road" into the "Rental Address"

textbox
• enter "95014" into the "City & State, or Zip" textbox
• enter "1500" into the "Current Monthly Rent ($)"

textbox
• select "2" from the "Bedrooms"'s "Bedrooms" listbox
• select "50+" from the "Units in Building" listbox
• click the "Units in Building" button

Figure 7: A script with hard-coded values.

44

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 17, 2008 at 09:45 from IEEE Xplore. Restrictions apply.

comments inside scripts. For example, to execute the

script in Figure 2, the browser has to be at the right

URL before execution, and the user must be registered

with the site and have a game in progress.

It was common for a script’s first version to include

login actions, followed in a few minutes by a revision

of the script which assumes that the user is logged in.

Apparently, users notice that the script’s login actions

stop working the very first time they test it, so they de-

lete the script’s login actions. The problem with this fix

is that the script fails the next day, after the session has

expired.

CoScripter scripts with such preconditions require

the user to be aware of the exact set-up needed for the

script to run properly. If the user’s memory or under-

standing of the preconditions is imperfect, then the

script may execute in unanticipated ways. Guarding

against failure may call for a mechanism to make pre-

conditions explicit, perhaps by adapting existing re-

search on supporting assertions in web macros [3] to

cover the kinds of preconditions that we observed.

5.4 Mixed-Initiative Execution

CoScripter has an affordance that is unusual in end-

user programming: mixed-initiative programming. In-

structions with the word “you” in them are not parsed

further; instead, control is handed to the user, who can

perform any desired actions before continuing by click-

ing the “Run” button.

We saw the “you” keyword serving four different

functions: conditional execution, pausing for timing

reasons, prompting for data to be provided, and signal-

ing an explicit need for human intelligence.

Conditional execution is needed when a script must

run under varying conditions, such as sometimes being

logged in and sometimes not. For example, user U4

inside IBM included the action “you may have to sign

in with your intranet id and password and click Sub-

mit”. This causes CoScripter to pause, so the user can

take action and then click the “Run” button to resume.

Timing reasons caused some users to pause scripts.

For example, U6 used “you” lines to stop after each

slide in an online presentation. As another example, we

saw multiple cases where scriptwriters tried to handle

the fact that CoScripter does not always wait until a

page is done loading. They tried lines such as “wait 10

seconds” (not recognizable by CoScripter). User U5,

needing a pause, tried “javascript.sleep(1000)”, which

CoScripter did not understand, and after some experi-

mentation, ended up with simply “you wait”.

Some scriptwriters may have wished for a way to

prompt users for input, and used “you” to fill the gap.

“You” could be used to let the user fill in a web form

directly, when the scripter wanted to avoid hard-coding

values or requiring Personal Database entries. Regard-

ing explicit need for human intelligence, an internal

IBM script avoided ethical problems by inserting

“you” before clicking to accept a legal agreement:

“You click the first "This update form is electronically

signed when you press" button”. Similarly, a script to

pay traffic fines in London allayed users’ potential lack

of trust in the script with this final line: “you click the

"Pay Now" button (To allow a review)”.

The “you” feature eases the learning curve for the

end-user programmer, giving the script author a way to

write useful scripts even when some portions seem too

difficult to write. Mixed-initiative execution also en-

ables incremental development and use of a script be-

fore the task is fully automated. Yet the feature was not

always used when it would have offered a clean solu-

tion. Perhaps this was due to the feature’s novelty to

many users, or due to a preconception that programs

ought to always run to completion.

6. Changing the Rules

Web sites are designed around a variety of assump-

tions about how the site will be used. In many cases,

these assumptions reflect an implicit social contract or

other general rules about the site. For instance, sites

that rely on advertising revenue assume that visitors

will see and click on ads. Programs such as the Firefox

“Adblock Plus” and “Platypus” extensions invalidate

this assumption by making it easy for users to remove

advertisements. Similarly, the web-scraping software

that powers many mashups (e.g., systems from Dapper,

Lixto and Kapow) automates the process of clipping

data from sites, without having a person ever look at

the pages that provide that data.

CoScripter macros can invalidate the assumption

that users will manually click on the buttons and links

on a page. In our sample of 60 public repository

scripts, 18% of them were designed to circumvent this

assumption or others underlying web sites.

For example, user U9 created a script called

“Automated Click for Charity”, which goes to several

sites that donate small amounts of money to different

charities whenever pages are visited, as a reward for

viewing the advertisements. User U10 created scripts

for playing lottery sites (sites that, instead of donating

to charity, put a portion of the revenue into a pot that

site visitors can win). An even more egregious script

logs into a website many times under different user-

names to vote for user U11 in a “Bachelor Search”

contest (with a significant monetary prize). At present,

this user is winning the contest by a large margin.

As a final example of changing the rules, one IBM

script changes a password four times, thereby circum-

venting an IBM rule that disallows the reuse of any of

45

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 17, 2008 at 09:45 from IEEE Xplore. Restrictions apply.

an employee’s last five passwords. Heretofore, chang-

ing a password four times has been sufficiently oner-

ous that it is not worth the effort to circumvent this

rule. But CoScripter changes this underlying assumed

safeguard because it changes the cost/benefit ratio.

There is another factor at work, too. Unlike previ-

ous web scripting tools, CoScripter provides a reposi-

tory for sharing scripts. In the past, when sophisticated

hackers produced hacking or denial-of-service tools,

less sophisticated “script kiddies” who used these tools

needed at least some minimal programming skills [7].

But CoScripter's web programs’ accessibility could en-

courage casual, opportunistic, and even altruistic mis-

use of resources. Systems like CoScripter may eventu-

ally force a change in the assumptions underlying web

site design.

7. Conclusions

Our field study of end-user programmers’ web mac-

ros has revealed what kinds of web scripts exist in the

real world and how these programs were designed. We

unearthed a variety of phenomena ranging from the

staid to the inventive to the mischievous, yielding the

following conclusions:

Even if a programming language lacks basic con-

structs like conditionals and callable functions, it still

can be useful. CoScripter does not yet support all re-

quirements needed for every common browser automa-

tion task [14], but it provides enough value that many

users keep creating and executing scripts. There is a

role in the world for non-Turing-complete languages.

End-user programmers can effectively share pro-

grams anonymously. Prior research found that end-user

programmers often share programs within specific or-

ganizational settings [15][16]. Our study generalizes

this finding, as the internet CoScripter site’s users had

no organizational relationships with one another, yet

they still had enough needs in common that they could

make use of one another’s scripts.

The balance of power on the web continues to shift

toward site users, and away from site designers. For

years, only relatively sophisticated programmers have

had the ability to “mashup” information from web

sites, reusing data for purposes that are not sponsored

by site designers. Our study shows that CoScripter en-

ables even end-user programmers to undermine the as-

sumptions that undergird the web as we know it.

This is an exciting time for end-user programming

research. The conclusions above hint at many outstand-

ing research problems—such as how to help macro

authors benefit from the web without creating disincen-

tives for site designers to keep creating new site con-

tent—and they highlight an unparalleled opportunity to

directly affect millions of lives with research.

Acknowledgements

We thank Sam Adams and Rachel Bellamy for

helpful discussions about this research. This work was

supported by the EUSES Consortium via NSF ITR-

0325273, by NSF grants CCF-0438929 and CCF-

0613823, and by an IBM International Faculty Award.

References

[1] M. Bolin, P. Rha and R. Miller. Automation and cus-

tomization of rendered web pages. ACM UIST, 2005, 163-

172.

[2] iOpus corporate website, www.iopus.com

[3] A. Koesnandar. Building Dependable Web Macros Us-

ing Robofox, Master’s Thesis, Computer Science and Engi-

neering Dept., Univ. Nebraska - Lincoln, 2007.

[4] C. Krueger. Software reuse. ACM Comput. Surveys,

Vol. 24, No. 2, 1992, 131-183.

[5] G. Leshed, E. Haber, T. Matthews, T. Lau, CoScripter:

Automating and sharing how-to knowledge in the enterprise,

ACM CHI, 2008, 1719-1728.

[6] G. Little, T. Lau, A. Cypher, J. Lin, E. M. Haber, E.

Kandogan, Koala: Capture, share, automate, personalize

business processes on the web, ACM CHI, 2007, 943-946.

[7] J. McDermott and C. Fox. Using abuse case models for

security requirements analysis. 15
th

 Annual Computer Secu-

rity Applications Conf., 1999, 55-64.

[8] N. McFarlane. Fixing web sites with Greasemonkey.

Linux Journal, Vol. 2005, No. 138, 2005.

[9] B. Nardi. A Small Matter of Programming: Perspectives

on End-User Comput., MIT Press, 1993.

[10] M.B. Rosson, J. Ballin, J. Rode. Who, what and how? A

survey of informal and professional web developers, IEEE

VLHCC, 2005, 199-206.

[11] J. Rode and M.B. Rosson, Programming at runtime:

Requirements and paradigms for nonprogrammer web appli-

cation development, IEEE Symp. Human-Centric Comput.

Languages and Environments, 2003, 23-30.

[12] J. Rode, E. Toye and A. Blackwell. The fuzzy felt eth-

nography - understanding the programming patterns of do-

mestic appliances. J. Personal and Ubiquitous Comput., Vol.

8, No. 2, 2004, 161-176.

[13] C. Scaffidi, A. Ko, B. Myers, M. Shaw, Dimensions

characterizing programming feature usage by information

workers. IEEE VLHCC 2006, 59-62.

[14] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, B.

Myers, Scenario-based requirements for web macro tools.

IEEE VLHCC, 2007, 197-204.

[15] J. Segal. Some problems of professional end user devel-

opers, IEEE VLHCC, 2007, 111-118.

[16] S. Wiedenbeck, Facilitators and inhibitors of end-user

development by teachers in a school environment, IEEE

VLHCC, 2005, 215-222.

[17] R. Yin, Case Study Research: Design and Methods,

Sage Publications, 2003.

[18] J. Zimmerman, A. Tomasic, I. Simmons, I, Hargraves,

K. Mohnkern, J. Cornwell, R. M. McGuire, VIO: a mixed-

initiative approach to learning and automating procedural

update tasks, ACM CHI, 2007, 1445-1454.

46

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 17, 2008 at 09:45 from IEEE Xplore. Restrictions apply.

